Challenges and Opportunities for Innovative Protein Foods: Focus on Nutritional Quality

James D. House
Department of Food & Human Nutritional Sciences
University of Manitoba
Winnipeg, MB, Canada
Outline

• Factors impacting protein utilization
• Importance of measuring protein quality
 • Current and proposed methods
• Advantages and disadvantages of current and proposed methods
• New options to position quality proteins in the human food marketplace using *in vitro* approaches
• Summary comments
Factors Impacting Protein Utilization

Global Protein Ingredients Market Estimates and Forecast, 2014-2025

Global Plant Protein Ingredients Market, Compound Annual Growth Rate, 2016-2025 (USD Millions)

Source: Protein Industries Canada; Unleashing the potential of Canadian crops. Accessed: www.proteinindustriescanada.ca
Factors Impacting Protein Utilization

- Culture
- Cost
- Healthfulness
- Sustainability
- Convenience
- Sensory Attributes
- Innovation
- Food
- Safety
- Ethics
Incorporating Proteins Into Foods

- Measures of Protein Functionality
 - Critical for Sensory Qualities and Consumer Acceptability
 - What about Protein Quality?

<table>
<thead>
<tr>
<th>Protein Attribute</th>
<th>Example Application</th>
</tr>
</thead>
<tbody>
<tr>
<td>Water Holding Capacity</td>
<td>Baked Goods</td>
</tr>
<tr>
<td>Oil Holding Capacity</td>
<td>Baked Goods</td>
</tr>
<tr>
<td>Emulsification</td>
<td>Salad Dressings</td>
</tr>
<tr>
<td>Foaming</td>
<td>Egg Substitutes</td>
</tr>
<tr>
<td>Gelation</td>
<td>Sauces</td>
</tr>
<tr>
<td>Fibration</td>
<td>Meat Analogues</td>
</tr>
<tr>
<td>Solubility</td>
<td>Beverages</td>
</tr>
<tr>
<td>Extrudability</td>
<td>Snack Foods</td>
</tr>
</tbody>
</table>
Defining Protein Quality

Amino Acid Composition

How well does the amino acid pattern match human amino acid needs?

Digestibility/Availability

To what extent are the amino acids digested, absorbed and ultimately made available for metabolic demands?
Protein Quality: Important for Communicating Food Protein Messages

- Nutrition Facts Panel
 - Crude Protein Content
 - % Daily Value (in US)

- Claims
 - Origin Claims
 - Composition Claims
 - Symbols
 - Nutrient Content Claims
 - Source → Excellent Source
 - Comparative Claims

Nutrition Facts

<table>
<thead>
<tr>
<th>Valeur nutritive</th>
<th>Valeur nutritive</th>
</tr>
</thead>
<tbody>
<tr>
<td>Per 1 bowl (300 g) / Pour 1 bol (300 g)</td>
<td>Amount / % valeur quotidienne</td>
</tr>
<tr>
<td>Calories / Calories</td>
<td>440 / 29 %</td>
</tr>
<tr>
<td>Fat / Lipides</td>
<td>19 g / 29 %</td>
</tr>
<tr>
<td>Saturated / Saturés</td>
<td>4 g / 21 %</td>
</tr>
<tr>
<td>+ Trans / Trans</td>
<td>0.2 g / 21 %</td>
</tr>
<tr>
<td>Cholesterol / Cholestérol</td>
<td>35 mg / 18 %</td>
</tr>
<tr>
<td>Sodium / Sodium</td>
<td>860 mg / 38 %</td>
</tr>
<tr>
<td>Carbohydrate / Glucides</td>
<td>53 g / 18 %</td>
</tr>
<tr>
<td>Fibre / Fibres</td>
<td>4 g / 2 %</td>
</tr>
<tr>
<td>Sugars / Sucres</td>
<td>6 g / 2 %</td>
</tr>
<tr>
<td>Protein / Protéines</td>
<td>15 g / 25 %</td>
</tr>
<tr>
<td>Vitamin A / Vitamine A</td>
<td>15 %</td>
</tr>
<tr>
<td>Vitamin C / Vitamine C</td>
<td>4 %</td>
</tr>
<tr>
<td>Calcium / Calcium</td>
<td>20 %</td>
</tr>
<tr>
<td>Iron / Fer</td>
<td>20 %</td>
</tr>
</tbody>
</table>

High in Protein

Excellent Source of Protein
What Evidence is Needed to Support Content Claims?

<table>
<thead>
<tr>
<th>Jurisdiction</th>
<th>Basis for Protein Content Claims</th>
<th>Methodology</th>
</tr>
</thead>
<tbody>
<tr>
<td>Canada</td>
<td>Protein Quality & Quantity</td>
<td>Protein Rating System based on the Protein Efficiency Ratio (PER)</td>
</tr>
<tr>
<td>USA</td>
<td>Protein Quality & Quantity</td>
<td>Protein Digestibility-Corrected Amino Acid Score (PDCAAS)</td>
</tr>
<tr>
<td>EU</td>
<td>Protein Quantity</td>
<td>Expression of protein content relative to energy content</td>
</tr>
</tbody>
</table>

Proposed Method: Digestible Indispensable Amino Acid Score (DIAAS)
The Protein Rating Approach

- Based on Protein Efficiency Ratio
 - Rat bioassay
 - Weight gain/Protein intake over 28 days
- Adjustments relative to reference protein (Casein)
 - Adj. PER of Casein = 2.5
- Protein Rating = PER x Protein

Contained in Reasonable Daily Intake
- 20 ->39.9 = Source of Protein
- 40 and above = Excellent Source of Protein

Eggs
Protein Rating = 100 g x 12.63% x 3.1
= 39.2 (Good Source)
The Protein Rating Approach

Advantages

• Simple
• Provides a summative biological response to protein intake

Disadvantages

• Rodent bioassay → not reflective of human amino acid needs
• Ethical constraints
• Limited data available
 • 47 entries in the CFIA PER table
 • 247,326 foods in USDA Food Composition Databases
• Non-additive
 • Limits predictions for new food products
The PDCAAS Approach

Product of:

- Amino Acid Score (AAS)
 - AA in food/AA in reference pattern
 - mg/g protein
 - Reference pattern of 2-5 yr old school children (1991)

- True Fecal Protein Digestibility (TFPD)
 - Fecal N output/Dietary N input
 - Corrected for endogenous losses

![PDCAAS Values of Common Foods Chart]
Protein Content Claims

- **PDCAAS x Protein content of “RACC”**
 - Representative amount customarily consumed

- **Compare to Daily Value (50 g)**
 - 5 – 9.9 g = Good Source
 - 10 g or greater = Excellent Source

Example:

- **Eggs**
 - 50 g x 12.63% x 1.0 = 6.32 *(Good Source)*
The PDCAAS Approach

Advantages

- Simple
- Robust AA datasets
- Additive
 - Permits calculations of PDCAAS values of mixtures

Disadvantages

- Rodent bioassay → not reflective of human amino acid needs
- Fecal protein digestibility
 - Impact of gut microbiota
- Ethical constraints
- Truncation of values > 1.00
In Canada:

- CFIA will permit PER values to be calculated from PDCAAS.

Calc. PER = $rac{\text{PDCAAS (Test)}}{\text{PDCAAS (Casein) \times 2.5}}$

Various Pulses/Cereals & Processing Methods
The DIAAS Approach

Proposed Approach
• AA treated as individual nutrients
• Uses ileal digestibility values
• Scores >1.00 are not truncated
• Reference amino acid pattern updated

Advantages
• Should be more reflective of the ability of a food to provide available protein

Disadvantages
• Multiple analyses required for one DIAAS value
 • Expense
 • Analytical Errors
 • Minimum of 10 separate analyses for 1 number!
• Bioassay
 • Ethical constraints
PDCAAS vs. DIAAS

<table>
<thead>
<tr>
<th>Ingredients</th>
<th>PDCAAS 1991*</th>
<th>PDCAAS 2013¥</th>
<th>DIAAS</th>
</tr>
</thead>
<tbody>
<tr>
<td>WPI</td>
<td>99<sup>a</sup> (AAA)</td>
<td>97<sup>b</sup> (His)</td>
<td>100<sup>a</sup> (His)</td>
</tr>
<tr>
<td>WPC</td>
<td>100<sup>b</sup> (AAA)</td>
<td>107<sup>a</sup> (His)</td>
<td>107<sup>a</sup> (His)</td>
</tr>
<tr>
<td>MPC</td>
<td>100<sup>c</sup> (Thr)</td>
<td>121<sup>b</sup> (SAA)</td>
<td>120<sup>b</sup> (SAA)</td>
</tr>
<tr>
<td>SMP</td>
<td>100<sup>d</sup> (SAA)</td>
<td>112<sup>b</sup> (SAA)</td>
<td>105<sup>c</sup> (SAA)</td>
</tr>
<tr>
<td>PPC</td>
<td>75<sup>a</sup> (Trp)</td>
<td>71<sup>b</sup> (SAA)</td>
<td>62<sup>c</sup> (SAA)</td>
</tr>
<tr>
<td>SPI</td>
<td>93<sup>a</sup> (SAA)</td>
<td>86<sup>b</sup> (SAA)</td>
<td>84<sup>c</sup> (SAA)</td>
</tr>
<tr>
<td>Soya flour</td>
<td>98<sup>a</sup> (Lys)</td>
<td>93<sup>b</sup> (SAA)</td>
<td>89<sup>c</sup> (SAA)</td>
</tr>
<tr>
<td>Wheat</td>
<td>50<sup>a</sup> (Lys)</td>
<td>51<sup>a</sup> (Lys)</td>
<td>45<sup>b</sup> (Lys)</td>
</tr>
</tbody>
</table>

WPI = whey protein isolate
WPC = whey protein concentrate
MPC = milk protein concentrate
SMP = skim milk powder
PPC = pea protein concentrate
SPI = soy protein isolate

FAO Committee Recommended that no protein with DIAAS < 75 should qualify for source claims

* Mathai et al., 2017

Bridge2Food - 12th Plant Protein Ingredients Summit 2019

Mathai et al., 2017
Achieving Higher Protein Quality

The Impact of Adding Lentil Flour to Cereals on DIAAS Values

DIAAS Value vs. % Lentil Flour for various cereals:
- Wheat
- Oats
- Corn
- Brown Rice
Key Issues Moving Forward

• How do we manage variability in protein quality?
 • Need to understand the sources of variability

• Do we need to use animal testing to substantiate protein content claims?
 • In vitro methods?
 • Focus on protein content only?
Factors Influencing Plant Protein Quality

<table>
<thead>
<tr>
<th>Factor</th>
<th>Amino Acids</th>
<th>Digestibility / Availability</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plant Genetics</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>Environmental Factors</td>
<td>✔</td>
<td>?</td>
</tr>
<tr>
<td>Management Factors</td>
<td>?</td>
<td>?</td>
</tr>
<tr>
<td>Thermal Processing</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>Particle Size</td>
<td>✗</td>
<td>✔</td>
</tr>
<tr>
<td>Blending</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>Concentration/Isolation</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>Fermentation</td>
<td>?</td>
<td>?</td>
</tr>
<tr>
<td>Germination/Sprouting</td>
<td>?</td>
<td>?</td>
</tr>
<tr>
<td>Hydrolysis</td>
<td>?</td>
<td>?</td>
</tr>
</tbody>
</table>
in vitro PDCAAS

Do we need to have a bioassay to measure protein quality? No!

A. Franczyk et al., 2018

Ph Drop Method
\[y = 0.8992x + 3.7391 \]
\[R^2 = 0.8321 \]

Two Step Digestion Method
\[y = 1.0069x - 0.0716 \]
\[R^2 = 0.8627 \]
Advantages

• Removes ethical concerns of animal testing
• Simple and readily implemented
• Robust AA datasets
• Additive
 • Permits calculations of PDCAAS or DIAAS values of mixtures
• Maintains process for regulatory oversight of novel proteins

Disadvantages

• Requires additional validation against *in vivo* measures
• Need for standardized approaches and inter-laboratory validation studies
• As with all measures of quality, need to determine if it “matters” for human health
 • Particularly for foods not designed as sole-source foods (e.g. infant formulas)
What is a "Good Protein"?

Considerations for Protein Food
Innovation Ideas
What is a "Good Protein"?

- Cost
- Supply
- Functionality
- Sensory Attributes
- Nutritional Attributes
- Societal Expectations
Thank You!

- The Protein Quality team at University of Manitoba
- Our collaborators
- Our funding partners and sponsors
- Bridge2Food and Protein Industries Canada